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The theory developed by Ziman for the scattering of phonons by electrons is extended to high temperatures 
using the formalism of Klemens and Callaway. The theory is applied to the experimental results recently 
published by Dismukes et al. on the effect of doping on the thermal conductivity of Ge-Si alloys. After sub
tracting the electronic contribution from the measured thermal conductivity, the resulting lattice con
ductivity is analyzed. In describing the effect of doping, the deformation potential is the only free parameter; 
its value is adjusted for each sample to obtain agreement with the experimental data at 500°K, which is close 
to the Debye temperature. The theory then predicts the correct temperature dependence of the lattice ther
mal conductivity. The deformation potentials, derived in this manner, are found to be higher for w-type than 
for p-type material, and to increase with carrier concentration. For lightly doped />-type and w-type material, 
values of 1.2 and 1.6 eV were obtained, respectively, which compare well with the available literature data. 

I. INTRODUCTION 

THE high-temperature lattice thermal conduc
tivity of undoped Ge-Si alloys has been studied 

recently both experimentally and theoretically by 
Abeles et al.,1 Abeles,2 and Parrott.3 It was possible to 
explain the experimental results with the simple 
phenomenological model developed by Klemens4 and 
Callaway5 by including the contribution of normal 
processes to the thermal resistance as suggested by 
Klemens.6 

This investigation is concerned with the effects of 
doping on the lattice thermal conductivity of Ge-Si 
alloys at high temperatures. It is known that the addi
tion of donor and acceptor impurities decreases the 
lattice thermal conductivity of semiconductors.7-10 It 
was assumed7,8 that this is the result of the scattering 
of phonons by point defects, and it was believed, 
according to Stratton,11 that the effect of phonon 
scattering by the conduction electrons is negligible. 
Beers et al.9 pointed out that the theory of Stratton is 
in error due to incorrect combination of the relaxation 
times. They attributed the observed change in the 
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lattice thermal conductivity of germanium with doping 
to phonon-electron scattering. Experimental evidence 
exists12 that it is the free charge carriers rather than the 
ionized impurities which are responsible for the ob
served decrease in the lattice thermal conductivity of 
Ge-Si alloys. 

Ziman13 developed a theory of scattering of phonons 
by electrons at low temperatures. It is the purpose of 
this paper to extend this theory to high temperatures 
using the formalism of Klemens and Callaway. This 
theory is then applied to the experimental results 
recently published by Dismukes et al.u on doped Ge-Si 
alloys. Disordered alloys are of particular interest in 
this respect because, unlike the situation in elemental9 

or compound semiconductors,10 the additional point 
defect scattering introduced by the doping is negligible. 
Any change in thermal conductivity can therefore be 
attributed to an interaction of phonons with free charge 
carriers. It is shown in this paper that this effect 
quantitatively accounts for the observed decrease in 
lattice thermal conductivity of Ge-Si alloys with doping. 

II. LATTICE THERMAL CONDUCTIVITY OF 
DEGENERATE SEMICONDUCTORS AT 

HIGH TEMPERATURES 

This treatment applies to semiconductor alloys con
taining added doping impurities. It is based on an 
isotropic Debye model for the lattice waves. The con
tribution of the optical modes to the thermal resis
tivity10 is neglected. The assumption is made that the 
lattice disorder due to alloying can be described by point 
defect scattering. The following scattering mechanisms 
are assumed to contribute to the thermal resistivity: 

1. Phonon-Phonon Scattering 

Only 3-phonon scattering is considered here. We 
assume that normal (N) and umklapp (U) processes can 
be characterized by the relaxation times TN and ru 
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given by4'5-15 

and 
TN-i=B^\ 

TU 1==:B2O02, 

(1) 

(2) 

where co is the phonon frequency and Bi and B2 are 
independent of oo, but functions of temperature. The 
ratio of A7 to U processes, 

0=B1/B2, (3) 

is assumed to be temperature-independent. A justifi
cation for the use of Eqs. (1) and (2) is given in Sec. IV. 

2. Point-Defect Scattering 

The relaxation time TPD for point-defect scattering 
due to lattice disorder in alloys is given by4 

T P D - ^ C O T / W V , (4) 

where 8 is the cube root of the atomic volume. The 
sound velocity v is assumed to be given by the Debye 

expression 
v=(k/ti)(6T2)-ll*Q8, (5) 

where 9 is the Debye temperature. The disorder 
parameter T, modified2 for an alloy of two kinds of 
atoms, differing in mass and atomic volume, is 

r=y(l-y)t(AM/M)*+e(A5/8)*], (6) 

AM=MSi-MGe, (7) 

A8=8s~8Ge, (8) 

M=yMSi+(l~y)MGe. (9) 

Here y is the fraction of silicon content, M is the mean 
atomic weight, and e is2 a number of the order 40. 

3. Phonon-Electron Scattering 

Ziman13 derived the following expression for the 
phonon relaxation time TEP due to phonon-electron 
interaction with the electrons in a parabolic band: 

where 

and 

S2mnv f kT 
TEP —-

| fco l+expZ(§m*ifi-EF)/kT+hW/&m*vtkT+ fua/lkT] 

{kT n\+Qxpl{hm^v2-EF)/kT+h2o^/8m^v2kT~hu/kT ] 
(10) 

where S is the electron-phonon interaction constant or 
deformation potential, m* is the density-of-states 
effective mass, d is the density, and EF is the Fermi 
energy. The question as to whether the shear or dila-
tational deformation potentials or combination of both 
are to be used will be discussed in Sec. IV. This re
laxation time TEP describes the intravalley scattering. 

I t should be noted that in addition to the intravalley 
scattering, described by Eq. (10), there is also an 
intervalley interaction between electrons and phonons. 
Experimental evidence exists,16 however, that intra-
valley scattering is dominant. This is particularly valid 
for alloys since intervalley scattering involves phonons 
with large wave numbers and these phonons are already 
efficiently scattered by point defects. 

Also, it is known16-19 that doping changes the elastic 
properties, and therefore changes the Debye tempera
ture of a solid if measured at ultrasonic frequencies up 
to 108 sec-1. This effect originates in the change of the 
Fermi level with strain due to the shift of a band or 
valley with respect to one another. For thermal phonons 
in silicon (o>~4X1013 sec-1) the condition OOTG£>>1 pre
vails, since the intervalley electron scattering relaxation 
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time rei is 2X10 - 1 2 sec for ^-type silicon,16 and only 
slightly lower for n-type germanium.16 Therefore, it is not 
possible to establish equilibrium in the electron popu
lation of the valleys, and the effect of doping on the 
elastic constants is greatly reduced for the case con
sidered here. Since the effect is small even at ultrasonic 
frequencies, it is completely neglected in this work, and 
the Debye temperature is assumed to be independent 
of the carrier concentration. Evidence for this is given 
by Dolling20 from the measurement of the lattice 
spectrum of silicon, which is affected less than 1% by 
adding 3X1019 n-type carriers cm - 3 pure silicon. 

The relaxation times given above are combined in 
the usual manner. 

TC 1==TN l+Tu X+TpD
 lJTTEP l* (11) 

The formalism of Callaway5 is used to calculate the 
lattice thermal conductivity KI (in cgs units). 

where 
/Q=4.67xio-2(ey$){/d-/2

2//3}: 

a2x2ea 

and 

Jo 

Jo 

8/i( 
JO Tu\ 

-dx, 
(e«*-l)2 

TC a2x2eax 

TU (e«x-l)2 

/3TC\ a2x2eax 

.- )x2 

TU 1 (? I)2 
-dx. 

(12) 

(13) 

(14) 

(15) 

20 G. Dolling, Bull. Am. Phys. Soc. 8, 194 (1963). 
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TABLE I. Properties of Ge-Si alloys used in this investigation. 

Speci
men 

68 
41 

163 
162 

1834 
1975 

7 
42 

1941 
1970 

82 

Composition 
(at. % Si) 

73.8 
66.8 
70.2 
71.3 
79.5 
86.8 
72.0 
69.3 
71.7 
72.0 
71.0 

Impurity 

As 
As 
P 
P 
P 
P 
B 
B 
B 
B 
B 

Carrier 
concen

tration 
(cm-3) 

2.2X1018 

2.3 X1019 

6.7X1019 

1.5X1020 

1.4X1020 

2.7X1020 

3.4X1019 

8.9 X1019 

1.8X1020 

2.4X1020 

3.5 X1020 

Debye 
temp. 
(°K) 

532 
510 
521 
524 
553 
581 
527 
518 
526 
527 
524 

Reduced 
Fermi level 

at 500°K 

-3 .88 
-1 .41 
-0 .16 

0.96 
0.99 
2.30 
0.28 
1.15 
2.51 
3.02 
4.01 

Ktotal 
(W/cm deg) 

at 500°K 

0.055 
0.052 
0.048 
0.044 
0.046 
0.050 
0.053 
0.050 
0.050 
0.051 
0.053 

K e l 

(W/cm deg) 
at 500°K 

0.0003 
0.002 
0.004 
0.008 
0.007 
0.011 
0.002 
0.004 
0.008 
0.011 
0.015 

Kl 

(W/cm deg) 
at 500°K 

0.055 
0.050 
0.044 
0.036 
0.039 
0.039 
0.051 
0.046 
0.042 
0.040 
0.038 

Defor
mation 

potential 
(eV) 

1.6 
2.8 
4.4 
4.9 
6.7 
1.3 
1.8 
2.5 
2.8 
3.1 

Here a=0/T and #=co/W>, where COD is the Debye 
frequency. The contribution of the second term in Eq. 
(12) to KI in alloys is of the order of a few percent. 

The relaxation time TU contains the parameter J?2 

which must be determined. Leibfried and Schloemann21 

used the variational method to calculate the lattice 
thermal conductivity for 3-phonon processes at high 
temperatures and obtained (see Ref. 10 for the modifi
cation of their formula by a factor 4) 

Kt=- 41'3 
k\*M8& 

© Ny*T' 
(16) 

where N is Avogadro's number and y is the anhar-
monicity parameter. A similar formula, different only 
in the numerical factor, was derived by Dugdale and 
McDonald22 from a dimensional argument. 

The parameter B2 in Eq. (2) can be expressed2 in 
terms of the anharmonicity parameter y by assuming 
that the lattice thermal resistivity caused by pure 
3-phonon scattering is the same as derived by Leibfried 
and Schloemann. After inserting numerical values for 
the physical constants in Eqs. (1), (2), (4), and (10), 
and using the reduced temperature a and the reduced 
frequency x, the following expressions result for the 
relaxation times (in cgs units): 

and 

r i + ( 5 / 9 ) / n 72 

rc r 1 -3 .264X10" 2 or 
L 1 + 0 JM82a 

TEP~1 = X In { 
Q, [ ^_l_g— ay+if—Dax2— \ax 

(17) 

(18) 

(19) 

(20) 

21 G. Leibfried and E. Schloemann, Nachr. Akad. Wiss. Got-
.tingen, II Math.-Physik Kl. 4, 71 (1954). 

22 J. S. Dugdale and D. K. C. MacDonald, Phys. Rev. 98, 1751 
(1955). 

where 

A = 6.76X lW*(?n*/ni)282/M, (21) 

y= 3.72X 109(w*/m)<$29, (22) 

Z?=1.68XlOr-11/(w*/w)820, (23) 
where X denotes the number of valleys and v\ the reduced 
Fermi energy. 

III. Ge-Si ALLOYS 

Dismukes et al.u measured the thermal resistivity 
1/K, the absolute Seebeck coefficient Q and the electrical 
resistivity p between 300 and 1300°K of a number of 
p- and ^-type Ge-Si alloys of different composition as a 
function of doping. The analysis of these thermal con
ductivity data in terms of phonon-electron scattering 
is presented in this paper. Table I summarizes the 
pertinent properties of the specimens investigated. The 
carrier concentration listed is defined as n=l/eRff, 
where RH is the Hall coefficient. The Debye tempera
tures 0 were computed from the elastic constants. For 
further details the reader is referred to Ref. 14. 

In order to compare the theory given above with the 
experimental data, first the electronic contribution has 
to be subtracted from the total measured thermal con
ductivity. The electronic thermal conductivity /cei of a 
semiconductor is given by the expression23 

k\2 [An(in
JrAv(Tv 

* , - ( - ) * 

npb FE/ 

(nb+p)2L hT +Bn+B • 1 1 • (24) 

where a is the electrical conductivity, n and p are the 
electron and hole concentrations, respectively, b the 
mobility ratio, and Eg

T the band gap at the temperature 
T. The numbers An>p and Bn,p are determined by the 

23 See, e.g., J. R. Drabble and H. J. Goldsmid, Thermal Con-
duction in Semiconductors (Pergamon Press, Inc., New York, 
1961), p. 117. 
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FIG. 1. Experimental and theoretical values of the lattice 
thermal conductivity of n-type Ge0.3Sio.7 alloys as a function of 
the absolute temperature and carrier concentration. The theo
retical curves were fitted at 500°K ( « 9 ) ; this determines the 
deformation potentials | 81. 

scattering mechanism described by a parameter q and 
the reduced Fermi level 77. The quantities q and rj were 
calculated by Amith24 for the Ge-Si alloys samples 
given in Table I, from the room-temperature Hall co
efficient and the absolute Seebeck coefficient Q(T). By 
means of the tables of Amith, the Lorenz numbers, 
AniV and Bn,P} were then determined and the electronic 
thermal conductivity computed using Eq. (24). 

The energy band gap was assumed to be (in eV) 

£ / = 1 . 0 7 - -4.3X10-42\ 

for Ge0.3 and Li0 7 alloys. 
This was derived from the results of Braunstein et al.26 

at 296°K, using the same temperature coefficient for 
the band gap as found for pure silicon by Morin and 
Maita.26 The density-of-states effective masses tn* were 
taken from Busch and Vogt27; nip*= 1.0m was used for 
the holes and mn*= 0.427m for the one-valley effective 
mass of the electrons of Geo.3Sio.7- The mobility ratio 
6=1.5 was assumed; this is the ratio of the electron 
mobility in ^-type to the hole mobility in ^-type 
Ge-Si.14 

The values calculated for the electronic thermal 
conductivity are given in Table I. The experimental 
points in Figs. 1, 2, and 3 represent the resulting lattice 

24 A. Amith, International Conference on the Physics of Semi
conductors, Paris, 1964 (to be published). 

25 R. Braunstein, A. R. Moore, and F. Herman, Phys. Rev. 109, 
695 (1958). 

26 F. J. Morin and J. P. Maita, Phys. Rev. 96, 28 (1954). 
27 G. Busch and O. Vogt, Helv. Phys. Acta 33, 889 (1960). 

thermal conductivity which is analyzed in the following 
manner: 

Abeles2 has demonstrated that it is possible to de
scribe the experimental results for undoped Ge-Si alloys 
by means of the phenomenological Eqs. (12) to (19) 
over the whole system and at all temperatures by ad
justing the two parameters ft and 7. This step is re
peated in this work, since the assumptions14 on the 
specific heat at high temperatures had brought about 
some changes in the experimental data used by Abeles. 
Moreover, it was decided to fit these parameters at the 
Debye temperature of the materials rather than at room 
temperature. The anharmonicity parameter 7 was 
fitted to the experimental results for unalloyed silicon9 

and germanium9 at their Debye temperatures of 648 
and 374°K, respectively; the isotope scattering was 
taken into account. For both silicon and germanium, a 
value of 7=0.91 was obtained (Abeles had used 7=0.89 
or, in his notation, 71= 1.77). Adjusting the parameter 
j8 to undoped material is difficult because the true lattice 
thermal conductivity of an undoped sample is not 
measurable. A sample with a carrier concentration of 
1016 to 1017 cm~s (e.g., D 171 of Ref. 9) is partially 
transparent for blackbody radiation and, therefore, 
exhibits a photon effect.9 The thermal conductivity of 
a sample with 2.2X 1018 cm~3 (e.g., sample 68) is already 
lowered by the doping effect. Therefore, the parameter 
p was adjusted at 500°K (which is close to the Debye 
temperature of Ge0.3Si0.7), so that KI=0.056 W/cm deg. 
This value is slightly higher than that measured on 
sample 68 by the estimated amount of the doping effect. 

0.07 

Ge3 Si>7 

P-TYPE 

* 7 3.4 x 10 cm 

° 4 2 8.9xl0 , 9cm"3 

71941 I . 8 x l 0 2 ° c m 3 

a i 9 7 0 2.4xlO 2 0cmS 

20 -3 
« 8 2 3 . 5 x 1 0 cm 

THEORETICAL 

300 400 500 600 700 800 

T(°K) 

900 1000 1100 1200 

FIG. 2. Experimental and theoretical values of the lattice 
thermal conductivity of p-type Ge0.3Sio.7 alloys as a function of 
the absolute temperature and carrier concentration. The theo
retical curves were fitted at 500°K ( « 6 ) ; this determines the 
deformation potentials | S |. 

Geo.3Sio.7-
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For the strain term in the expression (6) for the disorder 
parameter the value €=39 was used, which was esti
mated2 for the Ge-Si alloys assuming the impurity 
model of Klemens. This strain term, however, con
tributes less than 7% to the disorder parameter. The 
value resulting for the ratio of N to U processes is 
0 = 2.0 (Abeles had used 0 = 2.5). 

Based on these values of the parameters y a n d fi 
which describe the undoped material, we have computed 
the theoretical lattice thermal conductivity values for 
the doped Ge-Si alloys by using Eqs. (12) to (23). The 
calculations were based on a one-band model, using the 
density-of-states effective masses given above. The 
multivalley structure of the conduction band was taken 
into account by using X=6 for w-type material. The 
values24 of the reduced Fermi level rj used here are those 
used for calculating the electronic thermal conductivity. 
Figures 1 and 2 show the resulting theoretical curves, 
which were evaluated by means of a computer, for 
different samples of p- and n-type Ge0.3Sio.7. Figure 3 
shows the same for n-type Geo.2Sio.8 and Geo.15Sio.85. 
The curves were fitted at 500°K ( ~ 9 ) to the experi
mental value of each sample by adjusting the defor
mation potential \S\ . As is seen in Figs. 1, 2, and 3, the 
theoretical curves exhibit the correct temperature de
pendence of the lattice thermal conductivity. The small 
deviations for the lightly doped specimens at very high 
temperatures are probably due to the errors in calcu
lating the large bipolar contribution to the electronic 
thermal conductivity [Eq. (24)]; it is very likely that 

7 
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2 
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" 
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FIG. 4. The quantity rex2 which determines the lattice thermal 
conductivity [Eq. (12)], as a function of the reduced phonon 
frequency x for different scattering mechanisms and their 
combinations. 

Eq. (25), which was established at low temperatures, 
is inadequate at high temperatures. Some minor devi
ations occurring in the most heavily doped ^>-type 
specimens (1970 and 82 in Fig. 2) at high temperatures 
are believed to be caused by the influence of the split-
off band at these high doping levels (see discussion 
below). 

The values of | S\ required for each sample to fit the 
experimental points are given in Table I. I t is found 
that I SI increases with the carrier concentration, and 
is higher for n- than for p-type material of the same 
carrier concentration. 

I •--[• I I 1 1 
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^ ^ ^ - ^ - - ^ 2.7 x 

I i 1 , 1 1 1 

Si.85 
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1 1 
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. I, 1 

1 I T I 

Ge2Sit8 n-TYPE 

1.4 x I02°cm~3 

1 1 ! 
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T (°K) 

1100 1200 

FIG. 3. Experimental and theoretical values of the lattice 
thermal conductivity of n-type Geo.2Sio.8 and Geo.15Sio.85 alloys 
as a function of the absolute temperature. The theoretical curves 
were fitted at 500°K (»G) ; this determines the deformation 
potentials | 81. 

IV. DISCUSSION 

In order to determine which phonons contribute 
dominantly to the thermal conductivity, it is useful to 
plot the quantity TCX2 against the reduced phonon 
frequency x; the contribution of the second term in 
Eq. (12) is small. This is shown in Fig. 4 for the different 
scattering mechanisms involved and their combinations. 
The lattice thermal conductivities are, according to 
Eq. (12), proportional to the areas under the curves. 
I t is seen that the addition of phonon-electron scattering 
to phonon-phonon and point-defect scattering reduces 
the area by an appreciable amount. Point-defect scat
tering cuts out the high-frequency phonons, while 
phonon-electron scattering reduces the mean free path 
of the low-frequency phonons. Most of the heat is 
carried, therefore, by phonons of frequency OJ^O.ISOJD. 
This provides some justification for the use of a Debye 
spectrum. Herring15 has pointed out that the longi
tudinal phonons undergo much less scattering by other 
phonons than transverse phonons in the long-wave
length limit, and that for the N processes, Eq. (1) is 
valid. If this limit still applies in our case, then the heat 
is predominantly carried by the long-wavelength 
phonons and the use of Eq. (1) is justified. Moreover, 
since the combination of phonon-electron and phonon-

Geo.15Sio.85
Geo.15Sio.85
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TABLE II. Information on deformation potentials. 

Type Material Si (eV) S2 (eV) Method 

dE0/dlaV 

Geo.sSio.7 
Si 
Si 
Si 
Si 
Si 
Si 
Si 
Si 

Geo.3Sio.7 
Si 
Si 
Si 

Geo.3Sio.7 
Si 
Si 

±1.6* 
-1 .80 b 

- 3 . 9 s 

- 1 . 7 k 

rfcl.21 

-2.09 

±0.4 or 2.8 
+0.3 
+1.5 

9.57 
8.3±0.3 
8.7 

11.3=bl.3 
8-11 
±11 

3.74/4.92 
2.04/2.68 

±5 

Thermal conductivity 
Theory0 

Piezoresistance, piezo-Hall effectd 

Piezoresistancee 

Piezobirefringencef 

Older values8 

Elastic constants11 

Mobilityj 

Mobility anisotropyd 

Thermal conductivity 
Theory0 

Piezo-cyclotron resonance"1 

Elastic constants11 

Thermal conductivity 
Theory0 

Optical absorption0 

a For the most lightly doped sample n =2.3 X1019 cm"3. 
b Calculated for the symmetry point X, not for A. 
° Reference 31. 
d Reference 33. 
« M. Asche and W. Mohling, Phys. Stat. Sol. 3, K225 (1963). 
f K. J. Schmidt-Tiedemann, Proceedings of the International Conference 

on the Physics of Semiconductors, Exeter (The Institute of Physics and the 
Physical Society, London, 1962), p. 191. 

« References given in Ref. 33. 

h Reference 18. 
J Assuming 82 =8.3 eV and using Fig. 6 top of Ref. 29 (1957). 
i Reference 32. 
k Assuming 82 =8.3 eV and using Fig. 6 bottom of Ref. 29 (1957). 
1 Extrapolated for a lightly doped sample of n =2.3 X1019 cm""3. 
™ J. C. Hensel and G. Feher, Phys. Rev. 129, 1041 (1963). 
n Reference 19. 
0 Reference 34. 

point-defect scattering dominate at all frequencies the 
results are not sensitive to the assumptions made for 
TN and TU> 

I t is attempted now to determine the physical mean
ing of the deformation potential as deduced from the 
thermal conductivity measurements. In a cubic crystal 
the deformation potential tensor has two independent 
components28: Si, the dilatation deformation potential, 
governing longitudinal mode scattering and 82, the 
shear deformation potential, governing transverse mode 
scattering. Electrons interact both with longitudinal 
and transverse phonons.29 If, however, as indicated 
above, the phonons with the longest mean free path are 
the longitudinal phonons, then it is sufficient to use 
Ziman's13 expression for the phonon-electron relaxation 
time, which was derived for the case of longitudinal 
mode interaction only, and the deformation potential 
given in Table I is the dilatation deformation potential 

Information about the deformation potentials in 
Ge-Si alloys is not available. Since we are dealing with 
alloys high in silicon content, and since the band 
structure of these alloys is very similar25-30 to the band 
structure of silicon, a comparison is made in Table I I 
with the available deformation potentials for silicon. 
The agreement among the different literature values 
given for 82 is excellent; the elastic constant measure
ments18,19 result in slightly higher values. Less reliable 

28 H. Brooks, in Advances in Electronics and Electron Physics•, 
edited by L. Marton (Academic Press Inc., New York, 1955), 
Vol. 7, p. 153. 

29 C. Herring and E. Vogt, Phys. Rev. 101, 944 (1956); 105, 
1933 (1957). 

30 F. Bassani and D. Brust, Phys. Rev. 131, 1524 (1963); H. R. 
Braunstein ibid. 130, 869 (1963). 

values are available, however, for 81, due to the diffi
culty of direct experimental determination of this 
quantity. In view of this, the agreement of our values 
with the theory,31 and with the values derived from 
mobility32 and mobility anisotropy33 by using the curves 
given by Herring and Vogt29 and assuming33 82= 8.3 eV, 
is satisfactory. I t is, of course, not possible to determine 
the sign of 8\. 

By combining the dilatation deformation potentials 
of fir- and ^-type material, the volume dependence of 
the energy gap, 

dEg/d l n F = 8\n— 8\v, (26) 

can be obtained. This quantity is accessible from optical 
measurements; the value determined by Paul34 is com
pared in Table I I with the values derived by combining 
8ln and 8\v given in Table I I . 

The advantage in the use of alloys over that of 
elemental or compound semiconductors has to be 
stressed. The strong point-defect scattering of short
wave phonons in the alloys reduces the problem to the 
long-wavelength limit. This has very desirable conse
quences : A number of assumptions are better fulfilled 
[Debye spectrum, the use of Eq. (1)], the additional 
point-defect scattering introduced by the dopant can 
be neglected, and finally, it is possible to determine the 
dilatation deformation potential 8\. 

The increase of the deformation potential with doping 
is shown in Fig. 5. I t is seen that | 8\ increases as n0A 

3 1 1 . GorofT and L. Kleinmann, Phys. Rev. 132, 1080 (1963). 
32 R. A. Logan and A. J. Peters, J. Appl. Phys. 31, 122 (1960). 
33 J. E. Aubrey, W. Gubler, T. Henningson, and S. H. Koenig, 

Phys. Rev. 130, 1667 (1963). 
34 W. Paul, J. Appl. Phys. Suppl. 32, 2082 (1961). 
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and n°-b for ^-type and ^-type alloys, respectively. The 
slope seems to be independent of alloy composition; 
the result for Geo.2Sio.8 and Geo.15Sio.85 follow quite 
closely the curve for Geo.3Sio.7- No values of | 8\ can be 
obtained for carrier concentrations smaller than 2X1019 

cm-3, but it is expected that in this region | S\ is inde
pendent of n. An indication of the carrier concentration 
dependence of | & | shown in Fig. 5 can also be found in 
the analysis24 of the change in mobility with doping. 
Furthermore, a similar effect with a similar power of n 
was observed by Csavinszky and Einspruch19 for the 
shear deformation potential in ^-type silicon from 
measurements of the elastic constants. The explanation 
offered by these authors is likely to apply also for the 
dilatation deformation potential, namely: (a) warping 
of the bands and (b) change in the band structure with 
doping. An additional possibility (c) is the dependence 
of the deformation potential on wave vector; this means 
that the deformation potential approximation, which 
assumes all states of a particular band to shift by the 
same amount under strain, is not valid any more for 
high-carrier concentrations. 

The effective masses used for the calculation in this 
paper are based on the single-band model for the valence 
band, and no attempt was made to include the change 
of m* with doping. This, however, does not affect 
seriously the observed increase of \&\ with doping 
(Fig. 5). In the ^-type material estimates were made on 
the sensitivity of the results on m*. It turns out that the 
changes of m* with doping35 are not able by far to 
account for the observed effect. The same probably 
holds for ^-type material. Csavinszky and Einspruch19 

have allowed for a 3-band model in ^-type silicon and 
have modified the effective masses to take into account 
the nonparabolicity of the bands. However, this did not 

35 M. Cardona, W. Paul, and H. Brooks, Helv. Phys. Acta 33, 
329 (1960); L. E. Howarth and J. F. Gilbert, J. Appl. Phys. 34, 
236 (1963). 
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FIG. 5. The deformation potential required to fit the theoretical 
curves in Pigs. 1, 2, and 3, as a function of the carrier 
concentration. 

change significantly the apparent dependence of | S\ 
on n. It seems that at least in ^-type material the de
pendence of the deformation potential on wave vector 
(c) is the dominant mechanism for the observed effect, 
because of the weak dependence of w* on doping.35 A 
breakdown of the deformation potential approximation 
should also show up in the measurements of physical 
properties under applied strain. Further studies in this 
direction are in progress. 
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